II Year – I SEMESTER

T P C
3+1 0 3

DIGITAL LOGIC DESIGN

UNIT I: Number Systems

Binary, Octal, Decimal, Hexadecimal Number Systems. Conversion of Numbers From One Radix To Another Radix, r's Complement and (r-1)'s Complement Subtraction of Unsigned Numbers, Problems, Signed Binary Numbers, Weighted and Non weighted codes

UNIT II:Logic Gates And Boolean Algebra

Basic Gates NOT, AND, OR, Boolean Theorms, Complement And Dual of Logical Expressions, Universal Gates, Ex-Or and Ex-Nor Gates, SOP, POS, Minimizations of Logic Functions Using Boolean Theorems, Two level Realization of Logic Functions Using Universal Gates

Gate Level Minimization: Karnaugh Map Method (K-Map): Minimization of Boolean Functions maximum upto Four Variables, POS and SOP, Simplifications With Don't Care Conditions Using K-Map.

UNIT III: Combinational Logic Circuits

Design of Half Adder, Full Adder, Half Subtractor, Full Subtractor, Ripple Adders and Subtractors, Ripple Adder/Subtractor Using Ones and Twos Complement Method. Design of Decoders, Encoders, Multiplexers, Demultiplexers, Higher Order Demultiplexers and Multiplexers, Priority Encoder, Code Converters, Magnitude Comparator.

UNIT IV: Introduction to Sequential Logic Circuits

Classification of Sequential Circuits, Basic Sequential Logic Circuits: Latch and Flip-Flop, RS- Latch Using NAND and NOR Gates, Truth Tables. RS,JK,T and D Flip Flops , Truth and Excitation Tables, Conversion of Flip Flops. Flip Flops With Asynchronous Inputs (Preset and Clear).

UNIT V: Registers and Counters

Design of Registers, Buffer Register, Control Buffer Registers, Bidirectional Shift Registers, Universal Shift Register, Design of Ripple Counters, Synchronous Counters and Variable Modulus Counters, Ring Counter, Johnson Counter.

UNIT VI: Introduction to Programmable Logic Devices (PLOs)

PLA, PAL, PROM. Realization of Switching Functions Using PROM, PAL and PLA. Comparison of PLA, PAL and PROM.

TEXT BOOKS:

- 1. Digital Design ,4/e, M.Morris Mano, Michael D Ciletti, PEA
- 2. Fundamentals of Logic Design, 5/e, Roth, Cengage

REFERENCE BOOKS

- 1. Switching and Finite Automata Theory, 3/e, Kohavi, Jha, Cambridge.
- 2. Digital Logic Design, Leach, Malvino, Saha, TMH
- 3. Modern Digital Electronics, R.P. Jain, TMH